

Client : Orléans métropole

Etudes: Marigny-les-Usages (45)

Intitulé : Mesure de la capacité des sols à infiltrer les eaux pluviales

Date 13/12/2024 Opérateur Quentin GUETTIER

Essai: S1

Repère:

Type: Vidange Fouille

Madrier au sol

Date essai : 11/12/2024

v 2.1 2024

Description de la fosse

Facteur a = 0,20

Outil: Mini pelle mécanique

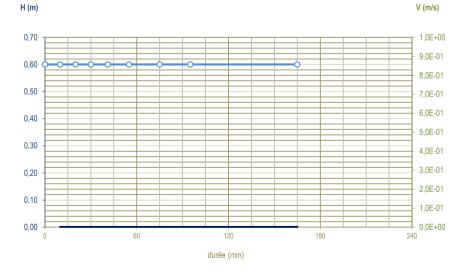
Repérage: SW MAPS

Repère: WGS 84

X (m) 47.95211

Y (m) 2.00515

 $\begin{array}{c} Y \text{ (m)} & 2.00515 \\ \text{Précision:} & \pm 50 \text{ cm} \end{array}$


Résultats expérimentaux

					1	Vitesse	Vitesse
Δt (min)	Dt en s	(hh:mm:ss)	Hs (m)	H (m)	ΔH (m)	d'infiltration K	d'infiltration K
						Darcy (m/s)	Matsuo (m/s)
0	0	0:00:00	0,95	0,60			
10	600	0:10:00	0,95	0,60	0,00	0,0E+00	0,0E+00
10	600	0:20:00	0,95	0,60	0,00	0,0E+00	0,0E+00
10	600	0:30:00	0,95	0,60	0,00	0,0E+00	0,0E+00
11	660	0:41:00	0,95	0,60	0,00	0,0E+00	0,0E+00
14	840	0:55:00	0,95	0,60	0,00	0,0E+00	0,0E+00
20	1200	1:15:00	0,95	0,60	0,00	0,0E+00	0,0E+00
20	1200	1:35:00	0,95	0,60	0,00	0,0E+00	0,0E+00
70	4200	2:45:00	0,95	0,60	0,00	0,0E+00	0,0E+00

Prof (m)

0-1,50

Terre végétale sur 20 cm puis Argiles marrons/ocres

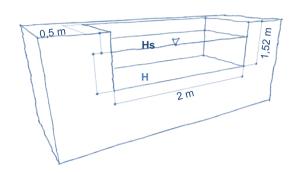
Interprétation

Vitesse moyenne K Darcy durant l'essai (m/s) **0,0E+00**

Vitesse moyenne K Matsuo durant l'essai (m/s) **0,0E+00**

Orléans métropole Client :

Etudes: Marigny-les-Usages (45)


Mesure de la capacité des sols à infiltrer les eaux pluviales Intitulé :

Date 13/12/2024 Opérateur Quentin GUETTIER

v 2.1 2024

Description de la fosse

Facteur a = 0,20

Outil:

Essai :

Type:

Repère:

Date essai :

Mini pelle mécanique

S2

Vidange Fouille

Madrier au sol

11/12/2024

Repérage : Repère:

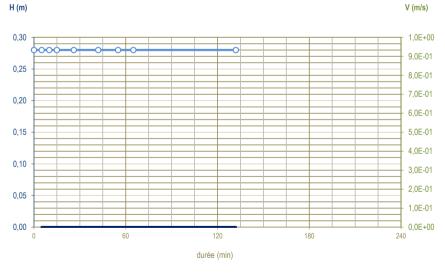
SW MAPS WGS 84 47.95175

X (m)

2.00645

Y (m) Précision: \pm 50 cm

Résultats expérimentaux


						Vitesse	Vitesse
Δt (min)	Dt en s	(hh:mm:ss)	Hs (m)	H (m)	ΔH (m)	d'infiltration K	d'infiltration K
						Darcy (m/s)	Matsuo (m/s)
0	0	0:00:00	1,24	0,28			
5	300	0:05:00	1,24	0,28	0,00	0,0E+00	0,0E+00
5	300	0:10:00	1,24	0,28	0,00	0,0E+00	0,0E+00
5	300	0:15:00	1,24	0,28	0,00	0,0E+00	0,0E+00
11	660	0:26:00	1,24	0,28	0,00	0,0E+00	0,0E+00
16	960	0:42:00	1,24	0,28	0,00	0,0E+00	0,0E+00
13	780	0:55:00	1,24	0,28	0,00	0,0E+00	0,0E+00
10	600	1:05:00	1,24	0,28	0,00	0,0E+00	0,0E+00
67	4020	2:12:00	1,24	0,28	0,00	0,0E+00	0,0E+00

Prof (m)

0-1,50

Terre végétale sur 20 cm puis Argiles marrons/ocres

H (m)

Interprétation

Vitesse moyenne K Darcy durant l'essai (m/s) 0,0E+00

Vitesse moyenne K Matsuo durant l'essai (m/s) 0,0E+00

Orléans métropole Client :

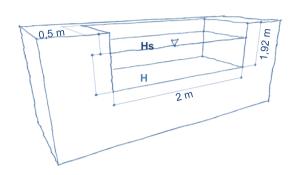
Etudes: Marigny-les-Usages (45)

Mesure de la capacité des sols à infiltrer les eaux pluviales Intitulé:

Date 13/12/2024 Opérateur Quentin GUETTIER Essai : **S**3

Repère:

Type: Vidange Fouille


Madrier au sol

Date essai : 11/12/2024

v 2.1 2024

Description de la fosse

Facteur a = 0,20

V (m/s)

Outil: Mini pelle mécanique Repérage : SW MAPS

WGS 84 Repère:

X (m) 47.95111 Y (m) 2.0054

Précision : \pm 50 cm

Résultats expérimentaux

H (m)

						Vitesse	Vitesse
Δt (min)	Dt en s	(hh:mm:ss)	Hs (m)	H (m)	ΔH (m)	d'infiltration K	d'infiltration K
						Darcy (m/s)	Matsuo (m/s)
0	0	0:00:00	1,13	0,79			
4	240	0:04:00	1,13	0,79	0,00	0,0E+00	0,0E+00
5	300	0:09:00	1,13	0,79	0,00	0,0E+00	0,0E+00
10	600	0:19:00	1,13	0,79	0,00	0,0E+00	0,0E+00
10	600	0:29:00	1,13	0,79	0,00	0,0E+00	0,0E+00
10	600	0:39:00	1,13	0,79	0,00	0,0E+00	0,0E+00
15	900	0:54:00	1,13	0,79	0,00	0,0E+00	0,0E+00
15	900	1:09:00	1,13	0,79	0,00	0,0E+00	0,0E+00
45	2700	1:54:00	1,13	0,79	0,00	0,0E+00	0,0E+00

Prof (m)

0-1,50

Terre végétale sur 20 cm puis Argiles marrons/ocres

7,0E-01 6,0E-01 5,0E-01 0,40 4,0E-01 0,30 3,0E-01 0,20 2,0E-01 0,10 1,0E-01 0,00 0,0E+00 120

durée (min)

Interprétation

Vitesse moyenne K Darcy durant l'essai (m/s) 0,0E+00

Vitesse moyenne K Matsuo durant l'essai (m/s) 0,0E+00

Client : Orléans métropole

Etudes: Marigny-les-Usages (45)

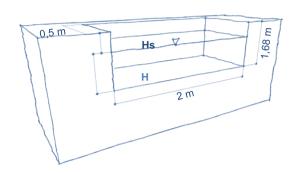
Intitulé : Mesure de la capacité des sols à infiltrer les eaux pluviales

Date 13/12/2024 Opérateur Quentin GUETTIER

Essai :

S4

Type: Vidange Fouille


Repère: Madrier au sol

Date essai : 11/12/2024

v 2.1 2024

Description de la fosse

Facteur a = 0,20

V (m/s)

Outil:

Mini pelle mécanique

Repérage : Repère :

Précision :

SW MAPS WGS 84 47.94788

X (m)

Y (m) 2.0013 1: ± 50 cm

Résultats expérimentaux


Δt (min)	Dt en s	(hh:mm:ss)	Hs (m)	H (m)	ΔH (m)	Vitesse d'infiltration K Darcy (m/s)	Vitesse d'infiltration K Matsuo (m/s)
0	0	0:00:00	1,18	0,50			` ′
5	300	0:05:00	1,18	0,50	0,00	0,0E+00	0,0E+00
5	300	0:10:00	1,18	0,50	0,00	0,0E+00	0,0E+00
10	600	0:20:00	1,18	0,50	0,00	0,0E+00	0,0E+00
20	1200	0:40:00	1,18	0,50	0,00	0,0E+00	0,0E+00
20	1200	1:00:00	1,18	0,50	0,00	0,0E+00	0,0E+00

Prof (m)

0-1,50

Terre végétale sur 40 cm puis Argiles marrons/grises

H (m)

Interprétation

Vitesse moyenne K Darcy durant l'essai (m/s) **0,0E+00**

Vitesse moyenne K Matsuo durant l'essai (m/s) **0,0E+00**

Client : Orléans métropole

Etudes: Marigny-les-Usages (45)

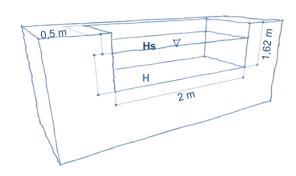
Intitulé : Mesure de la capacité des sols à infiltrer les eaux pluviales

Date 13/12/2024 Opérateur Quentin GUETTIER

Essai : S5

Repère:

Type: Vidange Fouille


Madrier au sol

Date essai : 11/12/2024

v 2.1 2024

Description de la fosse

Facteur a = 0,20

V (m/s)

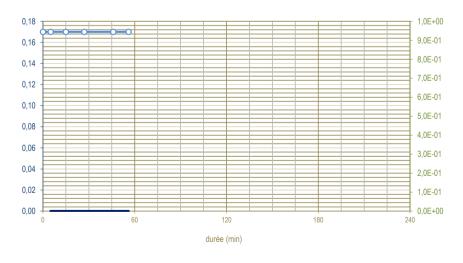
Outil: Mini pelle mécanique

Repérage : SW MAPS

Repère: WGS 84 X (m) 47.94732

Y (m) 1.99959
Précision: ± 50 cm

Résultats expérimentaux


Dt en s	(hh:mm:ss)	Hs (m)	H (m)	ΔH (m)	Vitesse d'infiltration K	Vitesse d'infiltration K
	()	- ()	\ /	(,	Darcy (m/s)	Matsuo (m/s)
0	0:00:00	1,45	0,17			
300	0:05:00	1,45	0,17	0,00	0,0E+00	0,0E+00
600	0:15:00	1,45	0,17	0,00	0,0E+00	0,0E+00
720	0:27:00	1,45	0,17	0,00	0,0E+00	0,0E+00
1140	0:46:00	1,45	0,17	0,00	0,0E+00	0,0E+00
600	0:56:00	1,45	0,17	0,00	0,0E+00	0,0E+00
	0 300 600 720 1140	0 0:00:00 300 0:05:00 600 0:15:00 720 0:27:00 1140 0:46:00	Dt en s (hh:mm:ss) Hs (m) 0 0:00:00 1,45 300 0:05:00 1,45 600 0:15:00 1,45 720 0:27:00 1,45 1140 0:46:00 1,45	Dt en s (hh:mm:ss) Hs (m) H (m) 0 0:00:00 1,45 0,17 300 0:05:00 1,45 0,17 600 0:15:00 1,45 0,17 720 0:27:00 1,45 0,17 1140 0:46:00 1,45 0,17	Dt en s (hh:mm:ss) Hs (m) H (m) ΔH (m) 0 0:00:00 1,45 0,17 300 0:05:00 1,45 0,17 0,00 600 0:15:00 1,45 0,17 0,00 720 0:27:00 1,45 0,17 0,00 1140 0:46:00 1,45 0,17 0,00	Dt en s (hh:mm:ss) Hs (m) H (m) ΔH (m) Vitesse d'infiltration K Darcy (m/s) 0 0:00:00 1,45 0,17 0.00 0,0E+00 300 0:05:00 1,45 0,17 0,00 0,0E+00 600 0:15:00 1,45 0,17 0,00 0,0E+00 720 0:27:00 1,45 0,17 0,00 0,0E+00 1140 0:46:00 1,45 0,17 0,00 0,0E+00

Prof (m)

0-1,50

Terre végétale sur 40 cm puis Argiles marrons/grises

H (m)

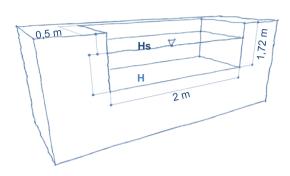
Interprétation

Vitesse moyenne K Darcy durant l'essai (m/s) 0,0E+00

Vitesse moyenne K Matsuo durant l'essai (m/s) **0,0E+00**

Orléans métropole Client :

Etudes: Marigny-les-Usages (45)


Mesure de la capacité des sols à infiltrer les eaux pluviales Intitulé:

Date 13/12/2024 Opérateur Quentin GUETTIER Date essai :

v 2.1 2024

Description de la fosse

Facteur a = 0,20

Outil:

Essai :

Type:

Repère:

Mini pelle mécanique

S6

Vidange Fouille

Madrier au sol

11/12/2024

Repérage : Repère:

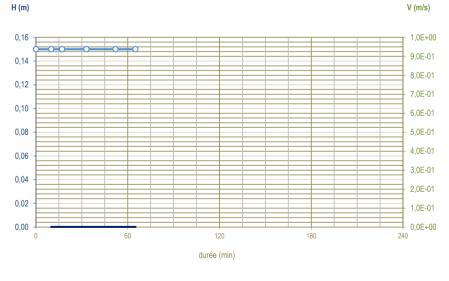
Précision :

SW MAPS WGS 84 47.94586

X (m)

Y (m) 2.00037 \pm 50 cm

Résultats expérimentaux


Δt (min)	Dt en s	(hh:mm:ss)	Hs (m)	H (m)	ΔH (m)	Vitesse d'infiltration K Darcy (m/s)	Vitesse d'infiltration K Matsuo (m/s)
0	0	0:00:00	1,57	0,15			, ,
10	600	0:10:00	1,57	0,15	0,00	0,0E+00	0,0E+00
7	420	0:17:00	1,57	0,15	0,00	0,0E+00	0,0E+00
16	960	0:33:00	1,57	0,15	0,00	0,0E+00	0,0E+00
19	1140	0:52:00	1,57	0,15	0,00	0,0E+00	0,0E+00
13	780	1:05:00	1,57	0,15	0,00	0,0E+00	0,0E+00

Prof (m)

0-1,50

Terre végétale sur 40 cm puis Argiles marrons/grises

H (m)

Interprétation

Vitesse moyenne K Darcy durant l'essai (m/s) 0,0E+00

Vitesse moyenne K Matsuo durant l'essai (m/s) 0,0E+00

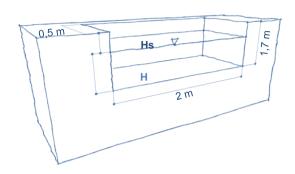
Client : Orléans métropole

Etudes: Marigny-les-Usages (45)

Intitulé : Mesure de la capacité des sols à infiltrer les eaux pluviales

Date 13/12/2024 Opérateur Quentin GUETTIER

Essai: S7


Type: Vidange Fouille

Date essai : 11/12/2024

v 2.1 2024

Description de la fosse

Facteur a = 0,20

V (m/s)

Outil:

Mini pelle mécanique

Madrier au sol

Repérage : Repère :

Précision:

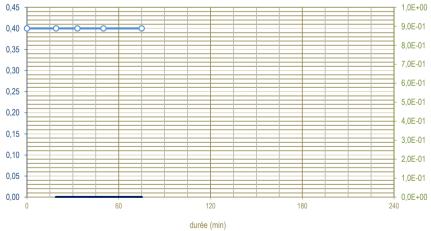
Repère:

SW MAPS WGS 84 47.94637

X (m) Y (m)

2.0026 ± 50 cm

Résultats expérimentaux


Δt (min)	Dt en s	(hh:mm:ss)	Hs (m)	H (m)	ΔH (m)	Vitesse d'infiltration K Darcy (m/s)	Vitesse d'infiltration K Matsuo (m/s)
0	0	0:00:00	1,30	0,40			
19	1140	0:19:00	1,30	0,40	0,00	0,0E+00	0,0E+00
14	840	0:33:00	1,30	0,40	0,00	0,0E+00	0,0E+00
17	1020	0:50:00	1,30	0,40	0,00	0,0E+00	0,0E+00
25	1500	1:15:00	1,30	0,40	0,00	0,0E+00	0,0E+00

Prof (m)

0-1,50

Terre végétale sur 40 cm puis Argiles marrons/grises

0,45

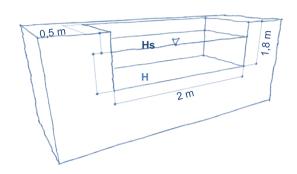
Interprétation

Vitesse moyenne K Darcy durant l'essai (m/s) **0,0E+00**

Vitesse moyenne K Matsuo durant l'essai (m/s) **0,0E+00**

Client : Orléans métropole

Etudes: Marigny-les-Usages (45)


Intitulé : Mesure de la capacité des sols à infiltrer les eaux pluviales

Date 13/12/2024 Opérateur Quentin GUETTIER

v 2.1 2024

Description de la fosse

Facteur a = 0,20

V (m/s)

Outil :

Essai :

Type:

Repère:

Date essai :

Mini pelle mécanique

S8

Vidange Fouille

Madrier au sol

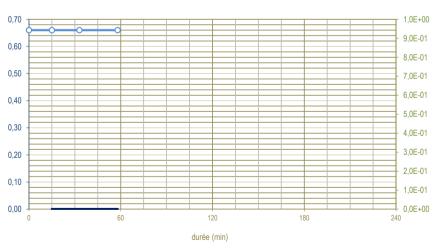
11/12/2024

Repérage : Repère : SW MAPS WGS 84 47.94691

X (m) Y (m) Précision :

2.00105 ± 50 cm

Résultats expérimentaux


Δt (min)	Dt en s	(hh:mm:ss)	Hs (m)	H (m)	ΔH (m)	Vitesse d'infiltration K Darcy (m/s)	Vitesse d'infiltration K Matsuo (m/s)
0	0	0:00:00	1,14	0,66			,
15	900	0:15:00	1,14	0,66	0,00	0,0E+00	0,0E+00
18	1080	0:33:00	1,14	0,66	0,00	0,0E+00	0,0E+00
25	1500	0:58:00	1,14	0,66	0,00	0,0E+00	0,0E+00
0							
0							
0							
0							
0							
0							

Prof (m)

0-1,50

Terre végétale sur 40 cm puis Argiles marrons/grises

H (m)

Interprétation

Vitesse moyenne K Darcy durant l'essai (m/s) **0,0E+00**

Vitesse moyenne K Matsuo durant l'essai (m/s) **0,0E+00**